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Inference Engines

« To identify mesocyclones in single Doppler radar an
“inference engine” must identify areas of azimuthal
shear, fundamentally a derivative of radial velocity w.r.t.
azimuthal distance: A

o6

where u is radial velocity and 6, is the distance in
azimuth bewteen samples (approximately A6 X r).

e MDA relies on a peak-to-peak derivative estimate.
— NOT resistant to noise.
e A local linear least squares derivative (LLSD) estimate is

more resistant to noise, especially if ¢ s first filtered to
remove extreme values
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Local Linear Least Squares
Derivative (LLSD)

* Draws upon long standing techniques that use
local regression fits, rather than global fits, as
filtering operations.

 Fits are first order, thus the regression
coefficient I1s used as the derivative estimate:

y =mx + b,

where y Is, say, radial velocity and x is location.
The regression coefficient is approximately the
local derivative, v,.



A Toy Example in 1D

* Procedure:
— Start with an analytic function (sine)
— Add noise (Gaussian)

— Estimate derivative using peak-to-peak and
LLSD

— Show difference between analytic derivative,
peak-to-peak, and LLSD
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What about 2D?

Expansion to 2D results In fitting a plane to a n x n
“window” or kernel of u rather than simply n points along
each a ring of constant range.

Advantages: a single application yields both azimuthal
and radial derivatives.

— Azimuthal is analogous to vorticity

— Radial is analogous to divergence

— Both derivatives are locally orthogonal.

LLSD acts as a filter on the entire radial velocity field.
Width of the kernel filter is dependent on range from the
radar.

The LLSD used in the report is 2D, using a 5 x 5 window
(five gates in range and five beams in azimuth).



2D LLSD: Nuts and Bolts

The LLSD is a filter applied to the entire radial velocity field.
Width of the kernel filter is dependent on range from the radar.
With some algebra, the orthogonal derivatives u, and u, are:

> iugw, D s;UW
o ArZ| W, Z(ASU) W,

where u; Is the radlal velocity at (i,j), Ar is the pulse volume
depth in range, s; Is the azimuthal distance from the center of
the window to the point (i,)), and w; is a uniform weight
function.

Because u, and u, are derived from only the radial component
of the wmd they are approximations of one half the horizontal
dlvergence and vertical vorticity, respectively, assuming a
locally symmetric wind field.




u, from Real Data

3 May 1999
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Algorithm Outline for Mesocyclone
Tracks from 2D LLSD

Calculate ug

Remove sharp “spikes” caused by
dealiasing errors and bad velocity data
Threshold based on reflectivity

— Include only data in and near storms; non-
precipitation echoes removed as well

Generate layer maxima
— Max in 0-3 km AGL
— Max in 3-6 km AGL



Mesocyclone Tracks 3 May 1999

The 6-hour maxima
of u, shows the
tracks of strong
circulations. The
overlaid white lines
show the tracks of
tornado damage for
this case, as
determined from
ground and aerial

surveys.




The Report

Compare Build 12 ORPG MDA to a rudimentary LLSD
Inference engine run on WDSSII system.

VCP 12 used throughout

Seven cases, all from Witt (2008): KICT, KDDC, KDMX,
KFTG, KGLD, KMPX

Output: lat, lon, strength rank (MDA only) and circulation
ID number (used to assess coherency)

LLSD values subject to K-means clustering to identify
contiguous areas of cyclonic shear of cyclonic shear
greater than 0.006 s for areas of 25, 60 and 90 km? (in
report scales 0O, 1, and 2). Two levels: 0-3 km AGL and
3-7 km AGL. Note: no optimization for circulation
coherency for LLSD.



KICT: a "moderate” case

KICT Low-Level Scale O
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KFTG: a “light” case
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« Many more detections from MDA
than LLSD

 MDA: 95 detections with 45 uniques.
* LLSD: 16 detections with 8 uniques
» Mean lifetime for MDA = 2.1
volumes, LLSD = 2.1 volumes

» Mean lifetime difference insignificant.

Circles = LLSD, + = MDA



KGLD: an “active” case

KGLD-A Low-Level Scale 0
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» Again, any more detections from
MDA than LLSD

 MDA: 979 detections with 267
unigues

LLSD: 265 detections with 124
unigues Mean lifetime for MDA = 3.7
volumes, LLSD = 2.1 volumes

» Mean lifetime difference significant at
p < 0.005



Aggregate Characteristics

. . . Mean Max
Algorithm | Detections | Uniques Litetime | Lifetime
MDA 2159 687 3.14 23
LLSDO 573 285 2.01 18

Low
LLSDL 351 186 1.89 18
Low
LLSD O
Mid 873 420 2.01 30
LLSD 1
Mid 515 222 2.13 18




Concluding Points

LLSD produces more visually coherent detections than
does MDA (even though MDA coherent lifetimes are
longer)

Difference due to years of work to make MDA coherent
In space/time while almost no such work has been
expended on LLSD (results shown here use an
experimental K-means technique optimized for
reflectivity cell tracking)

Thus, LLSD performance is even more promising

MDA that uses an LLSD inference engine will reduce
workload and fatigue for operational meteorologists



More Concluding Points

* Implementation will require:

— Develop subject matter expert “truth” data sets for
testing and development using super-res data

— Develop optimal spatial scale and vertical association
scales; spatial scales and thresholds for u, may need
to vary with height and/or range.

— Optimize space/time tracking based on “truth” data
sets.

— LLSD offers a way to easily blend data from different
radars.



Questions?
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Some 2D Synthetic Data Results

Azimuthal shear Divergence
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Vertical Cross-Section of u,
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3D Reconstructions

Azimuthal shear (aqua) may be viewed in 3D alongside
the high-reflectivity core (red isosurface), 20 dBZ shell
(grey isosurface) and 0.5 degree reflectivity scan of a
storm. The vertical depth of the storm is about 20 km.
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